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LETTER TO THE EDITOR 

Group theory approach to relativistic scattering 

Y Alhassidi, F Gursey and F Iachello 
Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, C T  0651 1, 
USA 

Received 31 May 1989 

Abstract. An algebraic technique, useful in studying relativistic scattering of a Dirac particle 
in a certain class of external fields, is presented. As an example, this technique is applied 
to the algebraic determination of the S-matrix for Coulomb-Dirac scattering. The technique 
requires the introduction of linear invariant operators or linear invariant coset operators 
(LCO). 

Algebraic techniques, useful in a variety of bound state problems in physics (for a 
review, see [ 13 and references therein), have recently been extended to non-relativistic 
scattering problems [2,3]. The relevant groups are non-compact and scattering states 
are described by their continuous unitary representations. For systems with dynamic 
symmetry, the functional form of the S-matrix is determined by an expansion formula 
which connects the asymptotic generators of the dynamic algebra to those of a 
pseudo-Euclidean algebra. Realistic models for heavy-ion scattering based on such 
S-matrices have been constructed [4]. 

Relativistic scattering problems by group theory have been discussed extensively 
in the past but mostly in the context of infinite-component wave equations (see, for 
example, [ 51). 

The purpose of this paper is to show that our algebraic methods for non-relativistic 
scattering can be extended to rezativistic scattering problems which are described by 
standard finite-component wave equations. In particular, we discuss here the scattering 
of a Dirac particle in an external field. Equations of this type have been applied 
recently to the study of the scattering of intermediate energy protons off nuclei [6] 
(Dirac phenomenology). Although we discuss here only scattering in a Coulomb field 
(in three spatial dimensions), we emphasise the fact that the technique presented here 
can also be applied to other solvable Dirac problems and that, in general, it can form 
the basis for realistic models of relativistic collisions. 

A group theoretical approach to the Dirac-Coulomb problem has been worked out 
by several authors [7-101 but this has been done by converting the Dirac equation 
into a second-order differential equation. Since one of the major new ingredients of 
the Dirac equation is that the differential equation is of first order in the spatial 
variables, we want to present here a new group theoretic technique which attacks 
directly the equation at the first-order level. 
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In the group theoretic approach to non-relativistic scattering [ 1-41, we have 
exploited the properties of quadratic Casimir invariants. This is because the Schrodin- 
ger equation is of second order in the spatial derivatives. We suggest that in treating 
the Dirac equation one should introduce linear invariants which necessarily imply the 
use of matrix representations and Clifford algebras [ll].  We are then naturally led to 
a set of coupled equations. The solution is obtained by an algebraic treatment of this 
coupled-channel problem. 

We begin with a brief discussion of the construction of a linear Casimir operator. 
Suppose that 9 is a Lie algebra defined through the structure constants fd; 

[ F ' ,  F'] = f d F k .  (1) 
Let 4' be a finite matrix representation of the same algebra such that [ + I ,  F'] = 0. 

We can then construct a 'coupled' representation of the algebra ai = +' + F'. A trivial 
example is provided by %=SU(2)  with F ' ,  4 '  and @' corresponding to the orbital, 
spin and total angular momentum, respectively. The linear Casimir operator is defined 
by 

(2) 
where C ( 4 )  = etc, are quadratic Casimir invariants and the index i is lowered 
by means of the Killing metric g" = f j k f $ .  Note that although we have used two copies 
of 9 (associated with 30%) the linear Casimir operator is invariant only under 9, 
the diagonal subgroup of 909. A Dirac-like equation can be obtained from (2) by 
choosing a realisation of F in terms of first-order differential operators and for 4 in 
terms of y-matrices. This technique can be generalised, if one wishes, to the construc- 
tion of invariant linear coset operators (LCO). This is obtained by considering a 
subalgebra 2. The algebra % can then be decomposed into 2 and 8 = 9- 2 which 
corresponds to the coset P = G /  H. One can then define a linear invariant LCO from 
L(F,, &) - L ( F h ,  4 h )  where the subscripts g and h refer to the algebras 9 and %?. 

In order to illustrate this general technique, we discuss here the Dirac equation of 
a charged particle of mass m in the presence of a potential A, = ( V ( r ) ,  0, 0, 0 ) ,  

The matrices a, p are related to the Dirac matrices y, in the usual way yW = (p,  p a ) ,  
and are constructed from two sets of Pauli Matrices p, U by p = p 3 0  1 and a = p,  0 U. 
For arbitrary V ( r )  this equation does not have any particular algebraic structure. 
However, we show in the paragraphs below that when V ( r )  = r ] / r  (Coulomb-Dirac 
equation) this equation has the structure of two coupled S 0 ( 2 , 1 ) 0 S 0 ( 3 )  algebras, 
where one of these pairs is a spatial realisation and the other is a matrix realisation. 
To this end, we first separate the radial part from the angular part. This corresponds 
to the separation 

L( 4, F )  = { C ( @ )  - C ( F )  - C ( 4 ) } / 2  = +)F' E + * F 

[a - p + p m  + V ( r ) ] $  = E$. (3) 

(SO(2 , l )  0 SO(3)) 0 (SO(2, 1) 0 SO(3)) 

radial part orbital part p-matrices a-matrices(spin) 
3. .1 3. 3. (4) 

where we have denoted by SO(3) the spin group, although, properly speaking, it should 
be denoted by Spin(3). The orbital part and the spin are combined into a coupled 
representation 

SO(3) 0 SO(3) = SO(3) 3 S 0 ( 2 )  
3. 3. .1 3 . .  ( 5 )  

{ L ,  Lz, L3) { a 1 9  U 2 9  a 3 1  { J , ,  J 2 ,  J A  { J A  
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This corresponds to the familiar addition of orbital L, and spin, 40, angular momenta 
to yield the total angular momentum J = L + ~ u .  In order to characterise the wavefunc- 
tions one needs here three quantum numbers in addition to the eigenvalues of J 3 .  
These can be chosen by diagonalising three operators, for example L2, a 2 / 4  and J2. 
The eigenvalues of u 2 / 4  are trivially given by 3/4 and will not be considered further. 
The use of linear invariants implies that instead of L2 we consider the invariant U * L. 
Indeed this is already what is usually done except that one diagonalises not U - L but 
the operator K = p(  1 + U L). Thus the angular problem is solved by considering 
simultaneous eigenstates of 

The wavefunction + separates-into an angularpart and a radial part according to 

and the radial wavefunction q!~ = (i) satisfies the coupled 2 x 2 equations 

( 9 )  

We want to show that this equation has a group structure and therefore can be solved 
in a straightforward way using algebraic techniques. Indeed it is related to the linear 
invariants of the lattice of groups 

S0(2,1)  
.1 

{NI, N2, N3) 
SO(2, l )  0 SO(2, l )  3 3 SO(2) 

.1 .1 1 
{MI, M2, M3) {iPl,iP2, P3) { N I  

SO(2)0S0(2)  
.1 1 

{MA {P3)  

where M is a coordinate realisation of SO(2, 1). This technique of coupling an orbital 
realisation of an algebra with a finite realisation of the same algebra in terms of Dirac 
matrices has been employed in the past for the dynamical group S0(4,2)  to describe 
injnite-component wave equations [ 121. 

The linear Casimir invariant of the coupled SO(2, l )  algebra is 

p * M = ip, MI + ip2M2 + p3M3 (10) 
while that of the coupled SO(2) algebra is p , M 3 .  

The algebraic treatment of the radial Dirac equation (8) is slightly more complicated 
than that of the angular part (6) and of the non-relativistic radial equation [13]. The 
reason is that (8) contains four parameters, K ,  m, E and 7. The representations of the 
first chain of groups in (9) provide only three quantum numbers since the eigenvalues 
of p2 are trivial. In order to construct the most general radial Dirac equation we must 
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use the invariants of all the groups appearing in (9). We therefore consider the 
simultaneous eigenvalues of 

M ~ & , , ~ ,  = M(M + l)&pMn 

( p  * M+CP3M3)&pMn = p 0 p M n  

N 3 6 p M n  = n & p M n .  (1lc) 

(1 l a )  

(1lb)  

We note that although ( p  - M) and (p3M3) do not commute, each of them commutes 
with M2 and N3 and thus their linear combination can be simultaneously diagonalised 
with M2 and N3. Equation ( l l b )  is related to the Dirac-Coulomb equation (8). In 
fact, consider the realisation of M in terms of two variables ( r ,  e), 

M,=- e''e [ - a +  ( -+-- ir :e)( -2i ;* I ) ]  
2b 

with a, b constants. The eigenfunctions of N3 = M3+p,/2 have the form 

r )  exp [i( n -$)e] 
g"(r) exp[i(n+$)e] 

The 6 dependence can be removed by a similarity transformation R = exp (iOp3/2). 
After some manipulations (multiplication by -bp2/n), one obtains an equation for 
4 = 

n 

The Dirac-Coulomb equation ( 8 )  can be brought to this form by diagonalising [7] the 
matrix A = ~ p ~ + i 7 7 p ~  (which we call the 'potential' matrix). This is simply achieved 
by the transformation 

The transformed spinor 6 = exp ( x p l ) ~  satisfies (14) with 
exp ( X P l M  exp (-xpd = AP3 tanh 2x = T / K  A = ( K ' -  772)1'2. (15)  

a '277~ ib(c+ 1) = m n = A  b ( p  + i + $ c )  = im.  (16) 

Once the group structure of the Dirac-Coulomb equation has been recognised, the 
computation of the associated S-matrix is straightforward and can be done by purely 
algebraic techniques. The S-matrix associated with (14) is diagonal. It is found from 
recursion relations derived algebraically using the 'Euclidean connection' techniques 
explained in [2,4] where the incoming and outgoing asymptotic waves are viewed as 
different representations of the Euclidean group. The 'out' amplitudes are then given 
in terms of the 'in' amplitudes by 

with 

and 

SA =exp(-irrh)T(A+l-i77&/k)/T(A+l+i77E/k) 
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Here k is the magnitude of the momentum. The solution of the Dirac-Coulomb 
problem can be obtained from (17) by retransforming back the spinor 4 to 4 with 

coshx s inhx  
= (sinh ,y cosh ,y 

This allows one to determine the connection between 4 O U t  and 4'". One can then 
proceed to find the S-matrix, SKj(k) = exp(id)fo''/f", by eliminating in the usual way 
the small component gin using the relation 

One then obtains the standard form [ 141 

I'(h + 1 -iIl&/k) 
T ( h + l + i q & / k ) '  

SKj(k) = exp [-i.rr(A - 1)] 

In conclusion: (i) the radial part of the Coulomb-Dirac equation is related to a 
matrix form of SO(2, 1) and it can be obtained from a combination of the linear 
invariants p - M and p3M3;  (ii) the seemingly complex structure of the relativistic 
Coulomb-Dirac S-matrix is simply due to the rotation (18) and it can be disentangled 
by going to the diagonal form (17). Our analysis opens the way to several possibilities: 
(i)  the construction and study of a class of solvable Dirac problems (for example the 
one-dimensional exponential potential, e-', and the potential step [ 151, tanh z ) ;  ( i i )  
the construction of realistic models of relativistic scattering including the use of 
higher-dimensional algebras as in [4, 161. A detailed discussion of these questions will 
be presented in a longer publication. 

This work was performed in part under the Department of Energy Contract Numbers 
DE-AC-02-76 ER 03074 and DE-AC-02-76 ER 03075. 
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