Group theory approach to relativistic scattering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L947
(http://iopscience.iop.org/0305-4470/22/20/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:39

Please note that terms and conditions apply.

# LETTER TO THE EDITOR 

# Group theory approach to relativistic scattering 

Y Alhassid $\dagger$, F Gürsey and F Iachello<br>Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, CT 06511 , USA

Received 31 May 1989


#### Abstract

An algebraic technique, useful in studying relativistic scattering of a Dirac particle in a certain class of external fields, is presented. As an example, this technique is applied to the algebraic determination of the $S$-matrix for Coulomb-Dirac scattering. The technique requires the introduction of linear invariant operators or linear invariant coset operators (LCO).


Algebraic techniques, useful in a variety of bound state problems in physics (for a review, see [1] and references therein), have recently been extended to non-relativistic scattering problems [2,3]. The relevant groups are non-compact and scattering states are described by their continuous unitary representations. For systems with dynamic symmetry, the functional form of the $S$-matrix is determined by an expansion formula which connects the asymptotic generators of the dynamic algebra to those of a pseudo-Euclidean algebra. Realistic models for heavy-ion scattering based on such $S$-matrices have been constructed [4].

Relativistic scattering problems by group theory have been discussed extensively in the past but mostly in the context of infinite-component wave equations (see, for example, [5]).

The purpose of this paper is to show that our algebraic methods for non-relativistic scattering can be extended to relativistic scattering problems which are described by standard finite-component wave equations. In particular, we discuss here the scattering of a Dirac particle in an external field. Equations of this type have been applied recently to the study of the scattering of intermediate energy protons off nuclei [6] (Dirac phenomenology). Although we discuss here only scattering in a Coulomb field (in three spatial dimensions), we emphasise the fact that the technique presented here can also be applied to other solvable Dirac problems and that, in general, it can form the basis for realistic models of relativistic collisions.

A group theoretical approach to the Dirac-Coulomb problem has been worked out by several authors [7-10] but this has been done by converting the Dirac equation into a second-order differential equation. Since one of the major new ingredients of the Dirac equation is that the differential equation is of first order in the spatial variables, we want to present here a new group theoretic technique which attacks directly the equation at the first-order level.

[^0]In the group theoretic approach to non-relativistic scattering [1-4], we have exploited the properties of quadratic Casimir invariants. This is because the Schrödinger equation is of second order in the spatial derivatives. We suggest that in treating the Dirac equation one should introduce linear invariants which necessarily imply the use of matrix representations and Clifford algebras [11]. We are then naturally led to a set of coupled equations. The solution is obtained by an algebraic treatment of this coupled-channel problem.

We begin with a brief discussion of the construction of a linear Casimir operator. Suppose that $\mathscr{G}$ is a Lie algebra defined through the structure constants $f_{k}^{i j}$;

$$
\begin{equation*}
\left[F^{i}, F^{j}\right]=f_{k}^{i j} F^{k} \tag{1}
\end{equation*}
$$

Let $\phi^{i}$ be a finite matrix representation of the same algebra such that $\left[\phi^{i}, F^{j}\right]=0$. We can then construct a 'coupled' representation of the algebra $\Phi^{i}=\phi^{i}+F^{i}$. A trivial example is provided by $\mathscr{G}=S U(2)$ with $F^{i}, \phi^{i}$ and $\Phi^{i}$ corresponding to the orbital, spin and total angular momentum, respectively. The linear Casimir operator is defined by

$$
\begin{equation*}
L(\phi, F)=\{C(\Phi)-C(F)-C(\phi)\} / 2=\phi_{i} F^{i} \equiv \phi \cdot F \tag{2}
\end{equation*}
$$

where $C(\phi)=\phi_{i} \phi^{i}$, etc, are quadratic Casimir invariants and the index $i$ is lowered by means of the Killing metric $g^{i j}=f_{l}^{i k} f_{k}^{j l}$. Note that although we have used two copies of $\mathscr{G}$ (associated with $\mathscr{G} \otimes \mathscr{G}$ ) the linear Casimir operator is invariant only under $\mathscr{G}$, the diagonal subgroup of $\mathscr{G} \otimes \mathscr{G}$. A Dirac-like equation can be obtained from (2) by choosing a realisation of $F$ in terms of first-order differential operators and for $\phi$ in terms of $\gamma$-matrices. This technique can be generalised, if one wishes, to the construction of invariant linear coset operators (LCO). This is obtained by considering a subalgebra $\mathscr{H}$. The algebra $\mathscr{G}$ can then be decomposed into $\mathscr{H}$ and $\mathscr{P}=\mathscr{G}-\mathscr{H}$ which corresponds to the coset $P=G / H$. One can then define a linear invariant lco from $L\left(F_{g}, \phi_{g}\right)-L\left(F_{h}, \phi_{h}\right)$ where the subscripts $g$ and $h$ refer to the algebras $\mathscr{G}$ and $\mathscr{H}$.

In order to illustrate this general technique, we discuss here the Dirac equation of a charged particle of mass $m$ in the presence of a potential $A_{\mu}=(V(r), 0,0,0)$,

$$
\begin{equation*}
[\boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta m+V(r)] \psi=\varepsilon \psi \tag{3}
\end{equation*}
$$

The matrices $\boldsymbol{\alpha}, \beta$ are related to the Dirac matrices $\gamma_{\mu}$ in the usual way $\gamma_{\mu}=(\beta, \beta \boldsymbol{\alpha})$, and are constructed from two sets of Pauli Matrices $\boldsymbol{\rho}, \boldsymbol{\sigma}$ by $\beta=\rho_{3} \otimes 1$ and $\boldsymbol{\alpha}=\rho_{1} \otimes \boldsymbol{\sigma}$. For arbitrary $V(r)$ this equation does not have any particular algebraic structure. However, we show in the paragraphs below that when $V(r)=\eta / r$ (Coulomb-Dirac equation) this equation has the structure of two coupled $\mathrm{SO}(2,1) \otimes \mathrm{SO}(3)$ algebras, where one of these pairs is a spatial realisation and the other is a matrix realisation. To this end, we first separate the radial part from the angular part. This corresponds to the separation

where we have denoted by $\operatorname{SO}(3)$ the spin group, although, properly speaking, it should be denoted by $\operatorname{Spin}(3)$. The orbital part and the spin are combined into a coupled representation

$$
\begin{array}{cccccc}
\mathrm{SO}(3) & \otimes & \mathrm{SO}(3) & \supset & \mathrm{SO}(3) & \supset \mathrm{SO}(2)  \tag{5}\\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\left\{L_{1}, L_{2}, L_{3}\right\} & \left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} & \left\{J_{1}, J_{2}, J_{3}\right\} & \left\{J_{3}\right\}
\end{array} .
$$

This corresponds to the familiar addition of orbital $\boldsymbol{L}$, and spin, $\frac{1}{2} \boldsymbol{\sigma}$, angular momenta to yield the total angular momentum $\boldsymbol{J}=\boldsymbol{L}+\frac{1}{2} \boldsymbol{\sigma}$. In order to characterise the wavefunctions one needs here three quantum numbers in addition to the eigenvalues of $J_{3}$. These can be chosen by diagonalising three operators, for example $\boldsymbol{L}^{2}, \boldsymbol{\sigma}^{2} / 4$ and $\boldsymbol{J}^{2}$. The eigenvalues of $\boldsymbol{\sigma}^{2} / 4$ are trivially given by $3 / 4$ and will not be considered further. The use of linear invariants implies that instead of $\boldsymbol{L}^{2}$ we consider the invariant $\boldsymbol{\sigma} \cdot \boldsymbol{L}$. Indeed this is already what is usually done except that one diagonalises not $\boldsymbol{\sigma} \cdot \boldsymbol{L}$ but the operator $K=\beta(1+\boldsymbol{\sigma} \cdot \boldsymbol{L})$. Thus the angular problem is solved by considering simultaneous eigenstates of

$$
\begin{align*}
& J^{2} \psi_{\kappa j m_{j}}=j(j+1) \psi_{\kappa j m_{j}} \\
& J_{2} \psi_{\kappa j m_{j}}=m_{j} \psi_{\kappa j m_{j}}  \tag{6}\\
& K \psi_{\kappa j m_{j}}=\kappa \psi_{\kappa j m_{j}} \quad \kappa=\left\{\begin{aligned}
\left(j+\frac{1}{2}\right) & \text { for } l=j-\frac{1}{2} \\
-\left(j+\frac{1}{2}\right) & \text { for } l=j+\frac{1}{2}
\end{aligned}\right.
\end{align*}
$$

The wavefunction $\psi$ separates into an angular part and a radial part according to

$$
\begin{equation*}
\psi_{\kappa j m_{j}}=\binom{f(r) \mathscr{\mathscr { M }}_{l j m_{j}}}{-\mathrm{i} g(r)(\boldsymbol{\sigma} \cdot \boldsymbol{r}) \mathscr{Y}_{l j m_{j}}} \tag{7}
\end{equation*}
$$

and the radial wavefunction $\phi=\binom{f}{g}$ satisfies the coupled $2 \times 2$ equations

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{\kappa}{r} \rho_{3}-m \rho_{1}-\mathrm{i}\left(\varepsilon-\frac{\eta}{r}\right) \rho_{2}\right] \phi=0 . \tag{8}
\end{equation*}
$$

We want to show that this equation has a group structure and therefore can be solved in a straightforward way using algebraic techniques. Indeed it is related to the linear invariants of the lattice of groups


where $\boldsymbol{M}$ is a coordinate realisation of $S O(2,1)$. This technique of coupling an orbital realisation of an algebra with a finite realisation of the same algebra in terms of Dirac matrices has been employed in the past for the dynamical group $\operatorname{SO}(4,2)$ to describe infinite-component wave equations [12].

The linear Casimir invariant of the coupled $\operatorname{SO}(2,1)$ algebra is

$$
\begin{equation*}
\boldsymbol{\rho} \cdot \boldsymbol{M}=\mathrm{i} \rho_{1} M_{1}+\mathrm{i} \rho_{2} M_{2}+\rho_{3} M_{3} \tag{10}
\end{equation*}
$$

while that of the coupled $\operatorname{SO}(2)$ algebra is $\rho_{3} M_{3}$.
The algebraic treatment of the radial Dirac equation (8) is slightly more complicated than that of the angular part (6) and of the non-relativistic radial equation [13]. The reason is that ( 8 ) contains four parameters, $\kappa, m, \varepsilon$ and $\eta$. The representations of the first chain of groups in (9) provide only three quantum numbers since the eigenvalues of $\boldsymbol{\rho}^{2}$ are trivial. In order to construct the most general radial Dirac equation we must
use the invariants of all the groups appearing in (9). We therefore consider the simultaneous eigenvalues of

$$
\begin{align*}
& \boldsymbol{M}^{2} \tilde{\Phi}_{\mu M n}=M(M+1) \tilde{\Phi}_{\mu M n}  \tag{11a}\\
& \left(\boldsymbol{\rho} \cdot \boldsymbol{M}+c \rho_{3} M_{3}\right) \tilde{\Phi}_{\mu M n}=\mu \tilde{\Phi}_{\mu M n}  \tag{11b}\\
& N_{3} \tilde{\Phi}_{\mu M n}=n \tilde{\Phi}_{\mu M n} . \tag{11c}
\end{align*}
$$

We note that although $(\boldsymbol{\rho} \cdot \boldsymbol{M})$ and $\left(\rho_{3} M_{3}\right)$ do not commute, each of them commutes with $\boldsymbol{M}^{2}$ and $N_{3}$ and thus their linear combination can be simultaneously diagonalised with $\boldsymbol{M}^{2}$ and $\boldsymbol{N}_{3}$. Equation (11b) is related to the Dirac-Coulomb equation (8). In fact, consider the realisation of $\boldsymbol{M}$ in terms of two variables $(r, \theta)$,

$$
\begin{align*}
& M_{ \pm}=\frac{e^{ \pm i \theta}}{2 b}\left[-a \mp\left(\frac{\partial}{\partial r} \pm \frac{\mathrm{i}}{r} \frac{\partial}{\partial \theta}\right)\left(-2 \mathrm{i} \frac{\partial}{\partial \theta} \pm 1\right)\right]  \tag{12}\\
& M_{3}=-\mathrm{i} \frac{\partial}{\partial \theta}
\end{align*}
$$

with $a, b$ constants. The eigenfunctions of $N_{3}=M_{3}+\rho_{3} / 2$ have the form

$$
\begin{equation*}
\tilde{\Phi}=\binom{\tilde{f}(r) \exp \left[\mathrm{i}\left(n-\frac{1}{2}\right) \theta\right]}{\tilde{g}(r) \exp \left[\mathrm{i}\left(n+\frac{1}{2}\right) \theta\right]} . \tag{13}
\end{equation*}
$$

The $\theta$ dependence can be removed by a similarity transformation $R=\exp \left(\mathrm{i} \theta \rho_{3} / 2\right)$. After some manipulations (multiplication by $-b \rho_{2} / n$ ), one obtains an equation for $\tilde{\phi}=\binom{\tilde{f}}{\tilde{g}}$,

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{n}{r} \rho_{3}+\frac{a}{2 n} \rho_{3}-\mathrm{i} b(c+1) \rho_{1}+\frac{b}{n}\left(\mu+\frac{1}{2}+\frac{c}{2}\right) \rho_{2}\right] \tilde{\phi}=0 . \tag{14}
\end{equation*}
$$

The Dirac-Coulomb equation (8) can be brought to this form by diagonalising [7] the matrix $\Lambda=\kappa \rho_{3}+\mathrm{i} \eta \rho_{2}$ (which we call the 'potential' matrix). This is simply achieved by the transformation
$\exp \left(\chi \rho_{1}\right) \Lambda \exp \left(-\chi \rho_{1}\right)=\lambda \rho_{3} \quad \tanh 2 \chi=\eta / \kappa \quad \lambda=\left(\kappa^{2}-\eta^{2}\right)^{1 / 2}$.
The transformed spinor $\tilde{\phi}=\exp \left(\chi \rho_{1}\right) \phi$ satisfies (14) with

$$
\begin{equation*}
a=2 \eta \varepsilon \quad \mathrm{i} b(c+1)=m \quad n=\lambda \quad b\left(\mu+\frac{1}{2}+\frac{1}{2} c\right)=\mathrm{i} \varepsilon \kappa . \tag{16}
\end{equation*}
$$

Once the group structure of the Dirac-Coulomb equation has been recognised, the computation of the associated $S$-matrix is straightforward and can be done by purely algebraic techniques. The $S$-matrix associated with (14) is diagonal. It is found from recursion relations derived algebraically using the 'Euclidean connection' techniques explained in $[2,4]$ where the incoming and outgoing asymptotic waves are viewed as different representations of the Euclidean group. The 'out' amplitudes are then given in terms of the 'in' amplitudes by

$$
\tilde{\phi}^{\text {out }}=\left(\begin{array}{cc}
S_{-\lambda} & 0  \tag{17}\\
0 & S_{\lambda}
\end{array}\right) \tilde{\phi}^{\text {in }}
$$

with

$$
S_{\lambda}=\exp (-\mathrm{i} \pi \lambda) \Gamma(\lambda+1-\mathrm{i} \eta \varepsilon / k) / \Gamma(\lambda+1+\mathrm{i} \eta \varepsilon / k)
$$

and

$$
S_{-\lambda}=-[(\lambda+\mathrm{i} \eta \varepsilon / k) /(\lambda-\mathrm{i} \eta \varepsilon / k)] S_{\lambda} .
$$

Here $k$ is the magnitude of the momentum. The solution of the Dirac-Coulomb problem can be obtained from (17) by retransforming back the spinor $\tilde{\phi}$ to $\phi$ with

$$
\exp \left(\chi \rho_{1}\right)=\left(\begin{array}{ll}
\cosh \chi & \sinh \chi  \tag{18}\\
\sinh \chi & \cosh \chi
\end{array}\right)
$$

This allows one to determine the connection between $\phi^{\text {out }}$ and $\phi^{\text {in }}$. One can then proceed to find the $S$-matrix, $S_{k j}(k)=\exp (\mathrm{i} \pi l) f^{\text {out }} / f^{\text {in }}$, by eliminating in the usual way the small component $g^{i n}$ using the relation

$$
\begin{equation*}
g^{\mathrm{in}}=\frac{i k}{\varepsilon+m} f^{\mathrm{in}} \tag{19}
\end{equation*}
$$

One then obtains the standard form [14]

$$
\begin{equation*}
S_{\kappa j}(k)=\exp [-\mathrm{i} \pi(\lambda-l)]\left(\frac{-\kappa-\mathrm{i} \eta m / k}{\lambda-\mathrm{i} \eta \varepsilon / k}\right) \frac{\Gamma(\lambda+1-\mathrm{i} \eta \varepsilon / k)}{\Gamma(\lambda+1+\mathrm{i} \eta \varepsilon / k)} \tag{20}
\end{equation*}
$$

In conclusion: (i) the radial part of the Coulomb-Dirac equation is related to a matrix form of $\mathrm{SO}(2,1)$ and it can be obtained from a combination of the linear invariants $\boldsymbol{\rho} \cdot \boldsymbol{M}$ and $\rho_{3} M_{3}$; (ii) the seemingly complex structure of the relativistic Coulomb-Dirac S-matrix is simply due to the rotation (18) and it can be disentangled by going to the diagonal form (17). Our analysis opens the way to several possibilities: (i) the construction and study of a class of solvable Dirac problems (for example the one-dimensional exponential potential, $\mathrm{e}^{-2}$, and the potential step [15], $\tanh z$ ); (ii) the construction of realistic models of relativistic scattering including the use of higher-dimensional algebras as in $[4,16]$. A detailed discussion of these questions will be presented in a longer publication.

This work was performed in part under the Department of Energy Contract Numbers DE-AC-02-76 ER 03074 and DE-AC-02-76 ER 03075.

## References

[^1]
[^0]:    $\dagger$ Alfred P Sloan Fellow.

[^1]:    [1] Iachello F 1987 Symmetries in Science II ed B Gruber and R Lenczewski (New York: Plenum) p 1-17
    [2] Alhassid Y, Gürsey F and Iachello F 1983 Phys. Rev. Lett. 50 873; 1983 Ann. Phys., NY 148 346; 1986 Ann. Phys., NY 167181
    [3] Frank A and Wolf K B 1984 Phys. Rev. Lett. 521737
    [4] Alhassid Y, Iachello F and Wu J 1986 Phys. Rev. Lett. 56271 Wu J, Iachello F and Alhassid Y 1987 Ann. Phys., NY 17368
    [5] Fronsdal C and Lundberg L E 1970 Phys. Rev. D 13247
    [6] Clark B C, Hama S and Mercer R L 1983 The Interactions Between Medium Energy Nucleons in Nuclei, 1982 ed H O Meyer (AIP Conf. Proc. 97) (New York: American Institute of Physics)
    [7] Biedenharn L C 1967 Phys. Rev. 126845 Biedenharn L C and Stahlhofen A 1986 Proc. 15th Int. Colloq. on Group Theoretical Methods in Physics Wu J, Stalhofen A, Biedenharn L C and Iachello 1987 J. Phys. A: Math. Gen. 204637
    [8] McIntosh V F 1972 Group Theory and its Applications II (New York: Academic Press)
    [9] Barut A D and Rasmussen W 1973 J. Phys. B: Atom. Mol. Phys. 61713
    [10] Kais S and Kim S K 1986 Phys. Lett. 114A 165
    [11] Iachello F 1974 Rend. Sem. Fac. Sci. Cagliari 49115
    [12] Barut A O and Baiquni A 1964 Phys. Lett. 30A 352
    [13] Wybourne B 1974 Classical Groups for Physicists (New York: Wiley) p 212
    [14] Mott N F and Massey H S W 1933 The Theory of Atomic Collisions (Oxford: Oxford University Press)
    [15] Klein O 1929 Z. Phys. 53157
    [16] Alhassid Y, Iachello F and Shao B 1988 Phys. Lett. 201B 183

